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White mold (Sclerotinia sclerotiorum) is a destructive disease of soybean worldwide. 11	

However, little is known on its impact on soybean production in Brazil. A meta-analytic 12	

approach was used to assess the relationship between disease incidence and soybean yield 13	

(35 trials) and between incidence and sclerotia production (29 trials) in experiments 14	

conducted in 14 locations across four seasons. Region, site elevation and season included 15	

as moderators in random-effects and random-coefficients models did not significantly 16	

explain the variability in the slopes of the incidence-yield relationship. The Pearson’s r 17	

obtained from back-transforming the Fisher’s Z estimated by an overall random-effects 18	

model showed that incidence of white mold was moderately and negatively correlated with 19	

yield (r = - 0.76, P < 0.0001). A random-coefficients model estimated a slope of - 17.2 kg 20	

ha-1 %-1, for a mean attainable yield of 3,455 kg ha-1, indicating that a 10% increase in 21	

white mold incidence would result in a mean yield reduction of 172 kg ha-1. White mold 22	

incidence and production of sclerotia were strongly and positively correlated (r = 0.85, P < 23	

0.0001). For every 10 % increase in white mold incidence, 1 kg of sclerotia ha-1 was 24	



produced. The relationship between disease incidence and production of sclerotia was 25	

stronger in southern regions and at higher elevation. In the absence of management, 26	

economic losses associated with white mold epidemics, assuming 43% incidence in 22% 27	

of soybean area, were estimated at approximately $1.47 billion USD annually within 28	

Brazil. 29	
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 31	

Introduction 32	

White mold is one the most damaging diseases of soybean worldwide (Grau & Hartman, 33	

1999). In Brazil, the disease causes significant crop losses with highly prevalent and severe 34	

epidemics in production regions at high (> 600 m) elevations (Meyer et al., 2014). In the 35	

USA, annual economic loss estimates due to white mold increased from 10 to 560 million 36	

dollars between 1996 and 2009, and was considered the second most important disease of 37	

soybean (Peltier et al., 2012). 38	

 White mold is caused by Sclerotinia sclerotiorum, an ascomycete fungus with broad 39	

host range including crops such as beans, canola, sunflower, tomato, potato and cotton 40	

(Boland & Hall 1994). The fungus is able to survive as sclerotia, which are long-term 41	

survival structures with an outer black rind containing melanin (Bolton et al., 2006). 42	

Sclerotia are abundantly produced on diseased soybean tissue and can remain viable for up 43	

to eight years in soil (Adams & Ayers, 1979). Sclerotia can germinate myceliogenically 44	

and grow as vegetative hyphae and directly infect some plants such as stem rot in canola. 45	

Alternatively, sclerotia can germinate carpogenically resulting in the production of 46	

apothecia and liberation of ascospores. These spores can be dispersed via air currents 47	



resulting in infection of blossom tissues, which are used as a nutrient source to enable 48	

growth and infection of other green tissues (Abawi & Grogan 1979). Infected petals 49	

deposited on leaves serve as inoculum sources for mycelia that can directly infect healthy 50	

tissues. However, the disease typically has a monocyclic progression because of the rare or 51	

minimal contribution of secondary inoculum (mycelia) to plant-to-plant spread (Grau & 52	

Hartman 1999). 53	

 The intensity of white mold is usually quantified as incidence, or the proportion of 54	

symptomatic plants. White mold intensity can also be quantified as severity, or the 55	

proportion of tissue area affected by the disease (Madden et al., 2007). The latter is 56	

commonly estimated using an ordinal rating scale (Hall & Phillips 1996), or a severity 57	

index calculated based on the frequency of the ordinal scores (Kolkman & Kelly 2002). A 58	

standard area diagram has also been developed to aid visual assessment of white mold 59	

severity in soybean (Garcia & Juliatti 2012). Other disease-related variables such as the 60	

number of sclerotia per seed weight and the number of apothecia per m2 on the soil surface 61	

have also been used as an indirect measure of white mold intensity (Huang et al., 2000; 62	

Zeng et al., 2012). Nevertheless, incidence remains a less subjective and rapid method of 63	

describing white mold intensity for field assessments with utility for comparing 64	

management tactics, such as fungicide efficacy or evaluating resistance (Hoffman et al., 65	

1998; Yang et al., 1999; del Rio et al., 2007). 66	

 The empirical relationship between white mold incidence and yield has been described 67	

for common bean (del Rio et al., 2004), soybean (Chun et al., 1987, Hoffman et al., 1998, 68	

Yang et al., 1999, Danielson et al., 2004), and canola (del Rio et al., 2007). These studies 69	

were conducted in the mid-western USA with markedly different microclimates, cropping 70	

systems and soybean genotypes compared to Brazil. The analysis of the coefficients of the 71	



linear regression models fitted to soybean field data shows relative reductions ranging from 72	

4.6 to 8.4 % in attainable yield for each 10 % increase in white mold incidence across nine 73	

independent experiments (Chun et al., 1987; Hoffmann et al., 1998; Yang et al., 1999). It 74	

is not known whether these models have predictive value for soybean production in Brazil 75	

where soybean is grown in subtropical and tropical climates and white mold is intensively 76	

managed with fungicides. Soybean production in tropical regions is increasing annually, 77	

accelerating the need to model crop-loss relationships in these environments to fully 78	

understand the impact of white mold on actual yield. 79	

 In Brazil trials have been conducted since 2008 using a standardized research protocol 80	

to evaluate fungicide efficacy against white mold across several years and regions. Results 81	

of these studies have been summarized for each trial and published as summaries of 82	

fungicide efficacy for white mold control in soybean (Meyer et al., 2014). Available 83	

summary statistics at the trial level can be selected using defined criteria, to extract and 84	

combined data to address specific questions using meta-analysis. The latter is a 85	

quantitative method of combining and summarizing results of individual studies using a 86	

statistically robust framework (Madden & Paul 2011; Scherm et al., 2014). There are 87	

multiple examples across a range of pathosystems focusing on quantitative summaries of 88	

treatments effects on disease reduction and increases in yield (Paul et al., 2011; Ojiambo et 89	

al., 2010; Ngugi et al., 2011) and on relationships between disease and agronomic-related 90	

variables such as yield, disease severity and mycotoxin concentration in other 91	

pathosystems (Shah & Dillard 2006; Paul et al., 2005; Paul et al., 2006; Madden & Paul 92	

2009; Dalla Lana et al., 2015). Traditionally, meta-analysis is usually preceded by a 93	

systematic review of multiple literature sources (Shah & Dillard 2006; Scherm et al., 94	

2014).  However, results may also be obtained directly from researchers or extracted from 95	

summaries in non-peer reviewed literature and analyzed using data at the individual level 96	



(plots) or aggregated (treatment means) (Paul et al., 2006; Dalla Lana et al., 2015).  97	

 In this study, we synthesized aggregated data (means across replicated plots) from 98	

multiple field trials designed to evaluate fungicide efficacy for white mold control over 99	

four years in Brazil (Meyer et al., 2014). The primary objective of this study was to 100	

summarize and quantify the heterogeneity of the relationships between mean estimates of 101	

white mold incidence and soybean yield or production of sclerotia. Quantitative knowledge 102	

of the disease-yield relationship and contribution of inoculum to future growing seasons 103	

can assist in crop loss assessment studies and in practical disease management decisions 104	

for white mold (del Río et al., 2004).  105	

 106	

Materials and Methods 107	

White mold incidence, soybean yield and sclerotia production 108	

Data on the estimated mean white mold incidence, soybean yield and weight of sclerotia 109	

were obtained from the tables of published reports of 36 trials conducted in Brazil during 110	

four growing seasons (2008-09 to 2011-12) (Meyer et al., 2014). The trials were conducted 111	

in 14 municipalities located at some regions of six states where white mold was previously 112	

recorded in years previous to the experiments (Fig. 1). Together, these states comprise 113	

approximately 70 % of the soybean production in Brazil (CONAB 2016). Field-specific 114	

information for the trials selected for this study are described in Table S1.  115	

 Trials were conducted following a standard protocol as described by Meyer et al., 116	

(2014). Briefly, fungicides were applied two to four times during the season using a 117	

backpack sprayer pressurized by CO2. The spray volume ranged from 200 to 300 L ha-1. 118	

The first fungicide application occurred between the R1 and R2 growth stages and 119	



subsequent applications were made at approximately 10-day intervals. In some trials, a 120	

mixture of azoxystrobin and cyproconazole (60 + 24 g a. i. ha-1) was used to control 121	

soybean rust across the entire trial area. In all trials, the experimental design was a 122	

randomized complete block with four replications, including a nontreated control. Each 123	

plot was 6 m long × 4 rows wide (12 m2).  124	

  White mold incidence was quantified between the R5 and R6 growth stage as the 125	

percentage of diseased plants within the two central rows of each plot. Sclerotia produced 126	

during the white mold epidemics were collected and weighed after threshing all plants 127	

from a single plot and normalized to g ha-1. Crop yield was calculated and expressed as 128	

kilograms per hectare at 13 % seed moisture content.  129	

 130	

Establishment of exclusion criteria for studies  131	

Data from each of the 36 studies constituted an independent study in the meta-analysis. 132	

The data were explored and one study was excluded because of a too narrow range (5 %) 133	

between the minimum and maximum incidence, which was considered insufficient to 134	

reliably quantify the relationship. Six studies did not provide information on sclerotial 135	

weight. Hence, data from 35 and 29 studies were analyzed for the study of the yield-136	

incidence and sclerotia-incidence relationships, respectively.  137	

 138	

Disease and yield variables 139	

Three dependent variables were obtained from each study: white mold incidence (%), crop 140	

yield (kg ha-1) and weight of sclerotia (g ha-1), all available as the mean across four 141	



replicated plots for each trial (Meyer et al., 2014). Two relationships, the yield-incidence 142	

and sclerotia-incidence were explored and the estimated coefficients and statistics 143	

constituted the effect-size within each study. Three effect-sizes per study were summarized 144	

for each relationship, including the Fisher’s Z (Zr) transformation of the Pearson 145	

correlation coefficient (r) that summarizes the strength of the relationship (Paul et al., 146	

2005; Dalla Lana et al., 2015). Briefly, Pearson’s r was calculated for each study using the 147	

cor.test function within R. The Fisher’s Zr was calculated from r and number of pairs of the 148	

relationship (Paul et al., 2005) using the escalc function of the metafor package of R. The 149	

two other effect-sizes tested were the intercept and slopes of the relationship estimated by 150	

two different approaches as described below.  151	

 152	

Meta-analytic models: Correlation coefficients  153	

For the Fisher’s Zr and respective sampling variances calculated (Paul et al., 2005; Dalla 154	

Lana et al., 2015), a standard univariate random-effect meta-analysis was performed using 155	

the rma function of the metafor package of R with parameters estimated via maximum 156	

likelihood. Overall means and 95 % confidence interval (95 % CI) and prediction intervals 157	

(95 % PI) were calculated (Dalla Lana et al., 2015). Heterogeneity among the true effect-158	

sizes was evaluated based on significance of the Cochran Q test and the I2 index that 159	

measures the extent of heterogeneity of the true effect-sizes (Higgins & Thompson 2002).  160	

 The inclusion of a moderator variable that could account for at least part of the 161	

heterogeneity in the true effects (Borenstein et al., 2009) as a fixed effect expanded the 162	

model from a random to a mixed effects model (Madden & Paul 2009). Moderator 163	

variables were mostly categorical e.g., region (north or south), altitude (< 985 m or ≥ 985 164	

m), incidence class (< 40 % or ≥ 40 %) and yield class (< 2600 kg ha-1 or ≥ 2600 kg ha-1). 165	



The field trials conducted in locations situated below 20° south were classified as southern 166	

and the remaining locations as northern trials. For altitude, incidence and yield classes, 167	

categories were defined based on the median of the data. Year was tested as both a 168	

continuous and categorical variable. In both the random-effects and mixed models, the 169	

among-study variance was estimated using maximum likelihood (Viechtbauer, 2010) and 170	

the mean effect was estimated using weights based on the among-study variance and 171	

within-study variance, the latter being held fixed for each study (Borenstein et al., 2009; 172	

Madden & Paul 2011). Wald-type tests and 95 % CIs were obtained using an assumption 173	

of normality.  174	

 175	

Meta-analytic models: Regression coefficients  176	

The intercepts and slopes of the relationships were estimated and synthesized using two 177	

approaches. In the first approach, the estimated intercepts and slopes, together with the 178	

standard error of the parameter estimates from the linear regression models (the sampling 179	

variances), were summarized using a two-stage process (Diggle et al., 2002).  This 180	

consisted of fitting of a linear regression model for each trial, then aggregating the data 181	

using a multivariate meta-analytic model with corresponding random effects. Therefore, 182	

the averages of the effect sizes were estimated assuming the true effect varied between 183	

studies, and the studies were a random sample of the population. The distribution of the 184	

linear coefficients estimated independently for each trial was summarized by the 185	

calculation of the inter-decile (ID) range (90 to 10 %), or 80 % of the estimated intercepts 186	

and slope values, as a robust measure of the spread of the parameter estimates (Madden & 187	

Paul 2009). These analyses were run using rma.mv function of the metafor package of R 188	

with parameters estimated via maximum likelihood. 189	



 In the second, and more complex, approach, a random coefficients model, a type of 190	

mixed or multi-level model, was fitted to the data from all experiments (Madden & Paul 191	

2009).  This model estimated a population-average effect and provided study-specific 192	

predictions of the intercept and slope coefficients following the procedures described 193	

suitable for data with a relatively large number of subjects (studies) and small number of 194	

observations for each study (Madden & Paul 2009; Leeuw & Kreft 1995). The lmer 195	

function of the lme4 package of R was used as an equivalent procedure to that used by 196	

Madden & Paul (2009) based on SAS. This approach allowed focusing on direct overall 197	

(i.e. averaged population results) and individual study results to characterize relationships 198	

and explicitly account for the random effect of study. 199	

Relative yield loss estimation 200	

The scale of the estimated slopes was kg ha-1 per unitary increase in white mold incidence. 201	

Since damage functions are commonly reported in relative terms (% increase in yield loss 202	

or % yield reduction), and also for the purpose of comparison with other studies, the 203	

percent yield loss was calculated by dividing the estimated slope (kg ha-1 %-1) with the 204	

estimated intercept (kg ha-1), both derived from the fit of random-effects model, and 205	

multiplying by 100 (Madden & Paul 2009; Dalla Lana et al., 2015).  206	

 207	

Results 208	

Study-level variables and relationships  209	

There was substantial variation in white mold incidence (15.4 to 90.3%), maximum 210	

soybean yield (1,451 to 4,056 kg ha-1) and sclerotial weights (461  to 9480 g ha-1) in the 211	

non-treated check treatments among the studies (Fig. 2, Table S1). The fit of the linear 212	



regression at the study level demonstrated that, in general, yield decreased as white mold 213	

incidence increased (Fig. 3C, Fig. S1). The gradients in white mold incidence were due to 214	

variability in the efficacy of the fungicide treatments in reducing disease intensity. In some 215	

cases (e.g. trials 5 and 32, Fig. S1), the most effective treatment (lower incidence) did not 216	

result in the highest yield within the study. In other cases, fungicides with a similar level of 217	

disease control led to variable yield (e.g. trials 13 and 27, Fig S1). The amount of sclerotia 218	

produced generally increased with the increase in white mold incidence across all trials, 219	

but the slopes of these relationships within individual trials were highly variable (15.3 to 220	

406.9 k ha-1 %) (Fig. 3C, Table S3). There were always some sclerotia present within the 221	

plots even in the treatments with lowest incidence, since the fungicides were not 100 % 222	

effective. The maximum amount of sclerotia produced varied greatly across the trials. In 223	

some cases (e.g. trials 12 and 32, Fig. S2), maximum sclerotial production did not occur in 224	

the treatments with highest incidence within the study. In general there was a gradient in 225	

sclerotial production with a few exceptions (e.g. trials 21 and 23, Fig. S2). In these cases, 226	

the fungicides reduced the sclerotial production similarly and at lower levels than in the 227	

non-treated check treatment (Fig. S2). 228	

Yield-incidence relationship: Correlation coefficients 229	

Pearson's correlation coefficients (r) varied from - 0.96 to 0.11 (Fig. 3A). However, the 230	

null hypothesis of homogeneity in the estimated mean Fisher’s Z (𝑍!) among studies was 231	

rejected (P = 0.0029). The estimated 𝑍! by the random-effects model varied from – 0.95 to 232	

0.11 (Fig. 3B) and the mean was - 1.01 (95 % CI = - 0.85 to - 1.16), corresponding to a 233	

mean back-transformed correlation coefficient across all studies of - 0.76 (95 % CI = -0.36 234	

to - 0.92). The between-study variability (τ2) estimated using maximum likelihood was 235	

high (τ2 = 0.095, SE = 0.0531) and confirmed by the significance of the Q test (Q = 61.17, 236	



df = 34, p = 0.002), and high values of the I2 (42.97 %) and H2 (1.75) statistics. In the 237	

mixed-model, none of the categorical or continuous (year) moderator variables tested 238	

individually as fixed effects significantly affected 𝑍! (P > 0.3).  239	

Yield-incidence relationship: Intercept and slopes  240	

The random-coefficients model successfully fitted the data across the 35 studies. The 241	

estimated mean for the slope and intercept was highly similar between the two modeling 242	

approaches (data not shown). Estimates of the population-average intercept and slope were 243	

𝛽0= 3,455.7 kg ha-1 (SE = 132.93) and 𝛽1= 17.24 kg ha-1 %-1 (SE = 1.45), respectively.  244	

Moreover, both estimated parameters differed significantly from zero (P < 0.001).  The 245	

estimates of the random effects variances of the intercept and slope were 𝜎!!
! = 602,192.89 246	

and 𝜎!!
! = 37.60, respectively. The estimated covariance was 𝜎!!,!!= - 1,477.49. The 247	

among-study correlation of the effects of study on the intercept and slope was - 0.31, 248	

estimated based on the between-study variance components. The estimated best linear 249	

unbiased predictions (EBLUPs) for the intercepts (𝑏0) ranged from 1,821 to 4,888.9 kg ha-1 250	

(Table S2), and the inter-decile (ID) range was 1,900 kg ha-1. The ID was similar between 251	

estimates by the simple linear model and random-coefficients model, depicted by similar 252	

density curves (Fig. S3). The EBLUPs for the slopes (𝑏1) ranged from 7.57 to 28.02 kg ha-1 253	

%-1 (Table S2), and the ID was 10.41. This range was smaller than for the slopes from 254	

fitting the simple linear model to the data, for which the distribution was wider than the 255	

EBLUPs (Fig. S2B). The observations and the fit of the linear model for 35 individual 256	

regressions are shown in Fig. 3C (individual plots in Fig S1). The study-specific prediction 257	

lines and population-average predictions of yield and respective 95 % CI are shown in Fig. 258	

3D. The conditional (pseudo) R2 of the entire model and the Akaike Information Criterion 259	

(AIC) was 0.94 and 5,319.29, respectively. Similar to Fisher’s Z, none of the moderator 260	



variables affected significantly the population-average predictions of yield. Based on the 261	

overall mean (95 % CI) of the intercept and slope estimated by the random-coefficients 262	

model, the overall relative damage coefficient was estimated to be 0.49 %-1 (0.45 to 0.54).  263	

 264	

Sclerotia-white mold incidence relationship: correlation coefficients 265	

The Pearson's correlation coefficients varied from 0.37 to 0.99 (Fig. 4A). The null 266	

hypothesis of homogeneity in the estimated mean Fisher’s Z (𝑍!) among studies was 267	

rejected. The estimated 𝑍! by the random-effects model varied from 0.39 to 2.94 (Fig. 4B) 268	

and the mean was 1.25 (95 % CI = 0.085 to 14.75). This value corresponded to a mean 269	

back-transformed correlation coefficient across all studies of 0.85 (95% CI = 0.79 to 0.89, 270	

95% PI = 0.58 to 0.95). The between-study variability (τ2) estimated using maximum 271	

likelihood was high (τ2 = 0.0819, SE = 0.0549) confirmed by the significance of the Q test 272	

(Q= 48.68, df = 28, P = 0.009), and high values of the I2 (39.24%) and H2 (1.65) statistics. 273	

In the mixed-model, the inclusion of region, significantly affected 𝑍! (P < 0.003) and 274	

accounted for 62 % of the heterogeneity. Stronger associations were estimated in trials 275	

within the southern region (rZ  = 0.93, 95 % CI = 0.87 to 0.96, 95 % PI = 0.83 to 0.97) 276	

compared to the trials in the northern region (rZ = 0.81, 95 % CI = 0.75 to 0.86, 95 % PI = 277	

0.64 to 0.90). Elevation was marginally significant (P = 0.06) and accounted for 26.98 % 278	

of the heterogeneity of 𝑍!. Stronger associations were found in fields at higher elevation (rZ 279	

= 0.88, 95 % CI = 0.82 to 0.92, 95 % PI = 0.70 to 0.95) than the alternative (rZ = 0.80, 95 280	

% CI = 0.70 to 0.86, 95 % PI = 0.51 to 0.92). Year, incidence and yield classifications did 281	

not significantly affect 𝑍!  (P > 0.5).  282	

 283	



Sclerotia-white mold incidence relationship: Intercept and slopes  284	

Estimates of the population-average intercept and slope were 𝛽0= 280.5 g ha-1 (SE = 163) 285	

and 𝛽1= 98.59 g ha-1 %-1 (SE = 13.3), respectively, and both estimated parameters differed 286	

significantly from zero (P < 0.001). The estimates of the random effects variances of the 287	

intercept and slope were 𝜎!!
! = 431,433 and 𝜎!!

! = 4,201, respectively. The estimated 288	

covariance was 𝜎!!,!!= 40,115. The among-study correlation of the effects of study on the 289	

intercept and slope was 0.94, estimated based on the between-study variance components. 290	

The EBLUPs for the intercepts ranged from - 498.7 to 2,312.8 g ha-1 (Table S3), and the ID 291	

was 1,420.5. The ID of the predictions for the intercepts by random-coefficients model was 292	

lower than the estimates at the study level with the simple linear model (ID = 1,793.5), but 293	

the density curves were similar (Fig. S4A). The EBLUPs for the slopes ranged from 18.4 294	

to 307.8 g ha-1 %-1 (Table S3), and the ID was 145.87, which was slightly smaller from 295	

fitting the simple linear model to the data (ID = 163.71) (Fig. S4B). Observations and the 296	

fit of linear model for the 29 individual linear regressions and the study-specific prediction 297	

lines are show in Fig. 4C (individual plots in Fig S2). The population-average predictions 298	

of yield and respective 95 % CI are presented in Fig. 4D.  The conditional (pseudo) R2 of 299	

the entire model and the AIC was 0.90 and 5,379, respectively. None of the moderator 300	

variables affected significantly the population-average intercept and slope.  301	

 302	

Discussion 303	

The strength and heterogeneity of relationships between white mold incidence and soybean 304	

yield or sclerotial production was summarized using multi-level and random-effects meta-305	

analytic models, following approaches previously used to address related questions in plant 306	



pathology (Madden & Paul 2009; Dalla Lana et al., 2015). To the best of our knowledge, 307	

this is the first description of these relationships for soybean grown in Brazil, and provides 308	

a useful approach to explore these relationships in other subtropical and tropical regions of 309	

soybean production. The wide range of microclimates where the trials were conducted 310	

spanning four seasons and several growing regions may be one factor contributing to the 311	

wide variation in mean white mold incidence, production of sclerotia and soybean yield in 312	

non-treated check plots across the locations.  313	

 As expected, while soybean yield tended to decrease, sclerotial production tended to be 314	

positively associated with white mold incidence. Similar negative relationships between 315	

yield and white mold incidence have been reported for soybean (Chun et al., 1987; 316	

Hoffman et al., 1998; Yang et al., 1999; Danielson et al., 2004), dry bean (del Rio et al., 317	

2004) and canola (del Rio et al., 2007), using correlation and regression analyses. In 318	

soybean, Pearson’s correlation coefficients reported for nine trials conducted in the USA 319	

varied from 0.67 to - 0.94, with a mean r of - 0.84 across three studies (Chun et al., 1987; 320	

Hoffman et al., 1998; Yang et al., 1999). This is higher than the mean estimated correlation 321	

coefficient obtained in the present study (r = - 0.76). Differences among studies are 322	

expected and may be due to field-specific conditions but also the approach used to generate 323	

variation in disease incidence gradients. In this study, disease gradients were generated 324	

using fungicides with various efficacy levels for white mold control. In these previous 325	

studies, disease gradients were obtained by three different approaches: i) selecting sub-326	

areas within a larger plot representing variable white mold incidence (Hoffman et al., 327	

1998); ii) using 16 or 20 cultivars with variable white mold susceptibility, and artificial 328	

inoculation of fields (Chun et al., 1987); iii) using 63 to 64 cultivars in three small plot, 329	

replicated trials relying upon natural soilborne inoculum (Yang et al., 1999). Hence, in 330	

addition to the differential effect of fungicides it is likely that the different cultivars used in 331	



the Brazilian trials may have contributed to the variability associated with the incidence-332	

yield relationships. 333	

 Results reported here corroborate previous reports claiming white mold as one of the 334	

most damaging diseases of soybean (Peltier et al., 2012). The mean estimate of potential 335	

maximum relative crop loss of 50 % is only slightly lower than similar estimations made 336	

for soybean rust (60 % crop loss) (Dalla Lana et al., 2015). For a mean attainable yield of 337	

3,455 kg ha-1 (estimated intercept in this study), an average of 172.4 kg ha-1 (about to 3 338	

bags ha-1 or 2.67 bushels acre -1) would be lost for every 10 % increase in white mold 339	

incidence. In relative terms, this translates into a decrease of 4.9 % in attainable yield for 340	

each 10 % unitary increase in white mold incidence. This relative loss estimate is lower 341	

than findings reported in studies conducted in the mid-western USA, where the same 342	

relative loss (10 % incidence) across nine trials varied from 4.5 to 8.4 % and the mean 343	

estimated yield reduction was of 6.3 % (Chun et al., 1987; Hoffman et al., 1998; Yang et 344	

al., 1999). Although a range of edaphic factors adds stochasticity to direct comparisons, in 345	

general, white mold epidemics appear less damaging to soybean in Brazil compared to the 346	

mid-western production region of the USA. 347	

 None of the moderator variables tested (region, elevation, year, incidence and yield) 348	

significantly affected the strength and magnitude of the relationship between white mold 349	

incidence and yield. Other epidemiological factors that were unable to be qualified in our 350	

study that may be potentially affecting these relationships include primary inoculum 351	

densities, environmental conditions, ascosporic infection timing and disease severity (Grau 352	

& Hartman 1999). For the latter, the strength of the disease intensity – yield loss 353	

relationships may be increased because severity encapsulates the cumulative effect of 354	

epidemic progression in infected plants (Savary et al., 2006), such as the within-plant 355	



spread of mycelia in white mold. Analogous observations have been as reported for similar 356	

diseases such as Fusarium head blight in wheat (Spolti et al., 2015), where secondary 357	

inoculum has a limited contribution to disease increase. 358	

 Studies on the relationships between white mold incidence and sclerotial production 359	

under field conditions are scarce. Studies conducted in vitro for evaluating isolate 360	

variability in sclerotial production (Li et al., 2008; Lehner et al., 2014) may be of limited 361	

value to extrapolate to field conditions. Hoffman et al., (1998) estimated the number of 362	

sclerotia per 300 g of seed across five soybean cultivars, but the disease incidence-363	

sclerotial production relationship was not investigated. In our study, we found that 364	

sclerotial production was strongly associated with white mold incidence and there was high 365	

heterogeneity in the estimated slopes. Some potential contributors to the high variability in 366	

these relationships may be the variation across geographical locations and microclimatic 367	

conditions (19 locations across six states), and genetic differences of the S. sclerotiorum 368	

populations at these locations.   369	

  The mean estimated slope allowed for the determination that approximately 1 kg ha-1 of 370	

sclerotia were produced for every 10 % increase in white mold incidence. The estimated 371	

weight of an individual sclerotium produced under field conditions is unknown. However, 372	

studies conducted in vitro have reported average weights of a sclerotium ranging between 373	

0.006 g (Irani et al., 2011) and 0.01 g (Kuang et al., 2011). Based on the mean estimated 374	

value in these studies (0.008 g each sclerotium), 10 % incidence of white mold may result 375	

in 125,000 sclerotia ha-1 or 12.5 sclerotia m-2. One sclerotium may produce several 376	

apothecia (Bolton et al., 2006) and each apothecia may release up to 7.6 × 105 ascospores 377	

over 20 days (Clarkson et al., 2003). This data highlights the potential for substantial 378	

increases in inoculum densities following the introduction of white mold primary inoculum 379	



into a field. 380	

 Two moderator variables, region and elevation, significantly explained the 381	

heterogeneity of the correlation coefficients for relationships between white mold 382	

incidence and sclerotia production. Stronger associations were found in trials conducted in 383	

the southern regions and at high elevation areas. It is difficult to explain this result, but it 384	

might be related to climatic conditions. The trials classified as Southern were those 385	

conducted in the Paraná State, Brazil. In this region, temperatures are typically milder than 386	

those in the northern region. It is likely that more favorable and uniform weather 387	

conditions favoring the disease might have occurred across the trials conducted in the 388	

Southern region and higher elevations. For the latter, the longer dew period is another 389	

factor that favor would disease development.  390	

The results of present study may be useful for additional studies on risk assessments and 391	

economic analyses as a foundation for strategic and tactical disease management decisions. 392	

For example, considering a hypothetical scenario of 43 % white mold incidence (mean 393	

incidence in the non-treated plots across the trials), 651 kg ha-1 (or $217.00 USD assuming 394	

$ 20.00/60 kg USD) would be lost at harvest in the absence of fungicides with an expected 395	

production of 3,000 kg ha-1 (in the absence of white mold). In Brazil, white mold is 396	

estimated to occur on approximately 22 % of the total soybean area, or 6.8 million hectares 397	

(Meyer et al., 2015). In the above scenario, white mold could potentially result in an 398	

economic loss of $ 1.47 billion USD in soybean production in Brazil. To manage the 399	

disease, two applications of the fluazinam fungicide can effectively manage the disease 400	

leading to 73 % reduction of white mold incidence (Meyer et al., 2014). Therefore, a 401	

reduction from 43 % to 11.6 % in white mold incidence from fungicide application would 402	

still result in a reduction of 170.4 kg ha-1, or $ 56.8 ha-1 USD. Thus, even when using the 403	

most effective fungicides currently available, $ 386.24 M USD would still be lost due to 404	



white mold. When added this to the total fungicide cost of US$ 408 M (US$ 30.00 per 405	

application), a total economic loss of $ 794.24 USD would be expected, which is 406	

approximately 50 % of the total economic loss without fungicides. These results highlight 407	

the potential impact of white mold in Brazilian agriculture if not well managed and the 408	

need to combine other strategies such as host resistance, biological control and cultural 409	

practices that help avoid or reduce the damage caused by the disease. 410	

 411	
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535	



Figure 1 Location and names of the municipalities where 35 uniform fungicide trials were 536	

conducted and white mold incidence was recorded and related to sclerotia weight and 537	

soybean yield. The size of the circle is proportional to the mean incidence in the untreated 538	

check plot across trials and years. Refer to Table S1 for other field-specific information. 539	

 540	

Figure 2 Histograms for the observations of white mold and soybean variables in 35 541	

independent uniform trials conducted in Brazil from 2008-09 to 2011-12. White mold mean 542	

incidence in the check treatment of the study (A); Maximum mean soybean yield in one 543	

fungicide treatment of the study (B); Maximum mean Sclerotinia sclerotiorum sclerotia 544	

weight in one treatment of the study (C).  545	

 546	

Figure 3 Statistics and coefficients from fitting models for the relationship between mean 547	

values of soybean yield and white mold incidence across four plots of various fungicide 548	

treatments, and a non-treated check, evaluated in 35 independent uniform trials in Brazil 549	

during four years. Frequency of the Pearson’s correlation coefficient (A) and their 550	

respective Fisher’s transformation of r (Z) (B); observations (dots) and study-specific 551	

prediction regression lines (solid gray) of a simple linear model fit (C) and study-specific 552	

prediction lines (grey solid) and population-average predictions (thick solid black) of yield 553	

and respective 95% confidence interval (thick dashed black) (D). 554	

 555	

Figure 4 A.  Statistics and coefficients from fitting models for the relationship between 556	

mean values of sclerotial weight and white mold incidence across four plots of various 557	

fungicide treatments, and a non-treated check, evaluated in 29 independent uniform trials 558	

in Brazil during four years. Frequency of the Pearson’s correlation coefficient (A) and (B) 559	

their respective Fisher’s transformation of r (Z) (B); observations (dots) and study-specific 560	

prediction regression lines (solid gray) of a simple linear model fit (C); and study-specific 561	

prediction lines (grey solid) and population-average predictions (thick solid black) of yield 562	

and respective 95% confidence interval (thick dashed black) (D). 563	
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