Skip to contents

Survival analysis for quantitative ordinal scale data

Usage

CompMuCens(dat, scale, grade = TRUE, ckData = FALSE)

Arguments

dat

Data frame containing the data to be processed.

scale

A numeric vector indicating the scale or order of classes.

grade

Logical. If TRUE, uses the class value. If FALSE, uses the NPE (Non-Parametric Estimate).

ckData

Logical. If TRUE, returns the input data along with the results. If FALSE, returns only the results.

Value

A list containing the score statistic, hypothesis tests, adjusted significance level, and conclusion based on pairwise comparisons.

Details

This function supports analysis of quantitative ordinal scale data via interval-censored methods. The approach follows the workflow described by Chiang et al. (2023) and the reference implementation provided in the CompMuCens repository.

References

Chiang, K.S., Chang, Y.M., Liu, H.I., Lee, J.Y., El Jarroudi, M. and Bock, C. (2023). Survival Analysis as a Basis to Test Hypotheses When Using Quantitative Ordinal Scale Disease Severity Data. Phytopathology. https://apsjournals.apsnet.org/doi/abs/10.1094/PHYTO-02-23-0055-R

See also

Other Disease quantification: DSI(), DSI2()

Examples

if (requireNamespace("interval", quietly = TRUE)) {
  trAs <- c(5,4,2,5,5,4,4,2,5,2,2,3,4,3,2,2,6,2,2,4,2,4,2,4,5,3,4,2,2,3)
  trBs <- c(5,3,2,4,4,5,4,5,4,4,6,4,5,5,5,2,6,2,3,5,2,6,4,3,2,5,3,5,4,5)
  trCs <- c(2,3,1,4,1,1,4,1,1,3,2,1,4,1,1,2,5,2,1,3,1,4,2,2,2,4,2,3,2,2)
  trDs <- c(5,5,4,5,5,6,6,4,6,4,3,5,5,6,4,6,5,6,5,4,5,5,5,3,5,6,5,5,5,6)
  inputData <- data.frame(
    treatment = c(rep("A",30), rep("B",30), rep("C",30), rep("D",30)),
    x = c(trAs, trBs, trCs, trDs)
  )
  CompMuCens(dat = inputData,
             scale = c(0,3,6,12,25,50,75,88,94,97,100,100),
             ckData = TRUE)
}
#> $inputData
#>     treatment ClassValue intervals
#> 1           A          5  [12, 25]
#> 2           A          4  [ 6, 12]
#> 3           A          2  [ 0,  3]
#> 4           A          5  [12, 25]
#> 5           A          5  [12, 25]
#> 6           A          4  [ 6, 12]
#> 7           A          4  [ 6, 12]
#> 8           A          2  [ 0,  3]
#> 9           A          5  [12, 25]
#> 10          A          2  [ 0,  3]
#> 11          A          2  [ 0,  3]
#> 12          A          3  [ 3,  6]
#> 13          A          4  [ 6, 12]
#> 14          A          3  [ 3,  6]
#> 15          A          2  [ 0,  3]
#> 16          A          2  [ 0,  3]
#> 17          A          6  [25, 50]
#> 18          A          2  [ 0,  3]
#> 19          A          2  [ 0,  3]
#> 20          A          4  [ 6, 12]
#> 21          A          2  [ 0,  3]
#> 22          A          4  [ 6, 12]
#> 23          A          2  [ 0,  3]
#> 24          A          4  [ 6, 12]
#> 25          A          5  [12, 25]
#> 26          A          3  [ 3,  6]
#> 27          A          4  [ 6, 12]
#> 28          A          2  [ 0,  3]
#> 29          A          2  [ 0,  3]
#> 30          A          3  [ 3,  6]
#> 31          B          5  [12, 25]
#> 32          B          3  [ 3,  6]
#> 33          B          2  [ 0,  3]
#> 34          B          4  [ 6, 12]
#> 35          B          4  [ 6, 12]
#> 36          B          5  [12, 25]
#> 37          B          4  [ 6, 12]
#> 38          B          5  [12, 25]
#> 39          B          4  [ 6, 12]
#> 40          B          4  [ 6, 12]
#> 41          B          6  [25, 50]
#> 42          B          4  [ 6, 12]
#> 43          B          5  [12, 25]
#> 44          B          5  [12, 25]
#> 45          B          5  [12, 25]
#> 46          B          2  [ 0,  3]
#> 47          B          6  [25, 50]
#> 48          B          2  [ 0,  3]
#> 49          B          3  [ 3,  6]
#> 50          B          5  [12, 25]
#> 51          B          2  [ 0,  3]
#> 52          B          6  [25, 50]
#> 53          B          4  [ 6, 12]
#> 54          B          3  [ 3,  6]
#> 55          B          2  [ 0,  3]
#> 56          B          5  [12, 25]
#> 57          B          3  [ 3,  6]
#> 58          B          5  [12, 25]
#> 59          B          4  [ 6, 12]
#> 60          B          5  [12, 25]
#> 61          C          2  [ 0,  3]
#> 62          C          3  [ 3,  6]
#> 63          C          1         0
#> 64          C          4  [ 6, 12]
#> 65          C          1         0
#> 66          C          1         0
#> 67          C          4  [ 6, 12]
#> 68          C          1         0
#> 69          C          1         0
#> 70          C          3  [ 3,  6]
#> 71          C          2  [ 0,  3]
#> 72          C          1         0
#> 73          C          4  [ 6, 12]
#> 74          C          1         0
#> 75          C          1         0
#> 76          C          2  [ 0,  3]
#> 77          C          5  [12, 25]
#> 78          C          2  [ 0,  3]
#> 79          C          1         0
#> 80          C          3  [ 3,  6]
#> 81          C          1         0
#> 82          C          4  [ 6, 12]
#> 83          C          2  [ 0,  3]
#> 84          C          2  [ 0,  3]
#> 85          C          2  [ 0,  3]
#> 86          C          4  [ 6, 12]
#> 87          C          2  [ 0,  3]
#> 88          C          3  [ 3,  6]
#> 89          C          2  [ 0,  3]
#> 90          C          2  [ 0,  3]
#> 91          D          5  [12, 25]
#> 92          D          5  [12, 25]
#> 93          D          4  [ 6, 12]
#> 94          D          5  [12, 25]
#> 95          D          5  [12, 25]
#> 96          D          6  [25, 50]
#> 97          D          6  [25, 50]
#> 98          D          4  [ 6, 12]
#> 99          D          6  [25, 50]
#> 100         D          4  [ 6, 12]
#> 101         D          3  [ 3,  6]
#> 102         D          5  [12, 25]
#> 103         D          5  [12, 25]
#> 104         D          6  [25, 50]
#> 105         D          4  [ 6, 12]
#> 106         D          6  [25, 50]
#> 107         D          5  [12, 25]
#> 108         D          6  [25, 50]
#> 109         D          5  [12, 25]
#> 110         D          4  [ 6, 12]
#> 111         D          5  [12, 25]
#> 112         D          5  [12, 25]
#> 113         D          5  [12, 25]
#> 114         D          3  [ 3,  6]
#> 115         D          5  [12, 25]
#> 116         D          6  [25, 50]
#> 117         D          5  [12, 25]
#> 118         D          5  [12, 25]
#> 119         D          5  [12, 25]
#> 120         D          6  [25, 50]
#> 
#> $U.Score
#> # A tibble: 4 × 2
#>   treatment  score
#>   <chr>      <dbl>
#> 1 D         -15.1 
#> 2 B          -4.54
#> 3 A           4.23
#> 4 C          15.4 
#> 
#> $Hypothesis.test
#> # A tibble: 3 × 4
#>   treat1 treat2 `p-value for H0: treat1 <= treat2` p-value for H0: treat1 = tr…¹
#>   <chr>  <chr>                               <dbl> <lgl>                        
#> 1 D      B                                0.00188  NA                           
#> 2 B      A                                0.0113   NA                           
#> 3 A      C                                0.000746 NA                           
#> # ℹ abbreviated name: ¹​`p-value for H0: treat1 = treat2`
#> 
#> $adj.Signif
#> [1] 0.01666667
#> 
#> $Conclusion
#> [1] "c(\"D>B\", \">A\", \">C\")"
#>